Probabilistic Obfuscation through Covert Channels

Jon Stephens Babak Yadegari Christian Collberg Saumya Debray Carlos Scheidegger
Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA
Email: {stephensj2, babaky, collberg, debray, cscheid}@cs.arizona.edu

Abstract—This paper presents a program obfuscation framework that uses covert channels through the program’s execution environment to obfuscate information flow through the program. Unlike prior works on obfuscation, the use of covert channels removes visible information flows from the computation of the program and reroutes them through the program's runtime system and/or the operating system. This renders these information flows, and the corresponding control and data dependencies, invisible to program analysis tools such as symbolic execution engines. Additionally, we present the idea of probabilistic obfuscation which uses imperfect covert channels to leak information with some probabilistic guarantees. Experimental evaluation of our approach against state of the art detection and analysis techniques show the engines are not well-equipped to handle these obfuscations, particularly those of the probabilistic variety.

1. Introduction

This paper describes a novel approach to code obfuscation that uses covert channels, arising from a program’s interactions with its execution environment, to conceal information flow in its computation and thereby confuse information flow analyses. The ideas presented can be used for stealthy exfiltration of information in ways that cannot easily be detected using existing techniques.

Obfuscations that utilize covert channels are fundamentally different from other code obfuscations that have been discussed in the literature. Traditional obfuscations come in two flavors: control flow obfuscation, which disguises the order in which program statements are executed; and data obfuscation, which disguises the values that are manipulated by the computation. The former typically introduce additional information flow paths in order to confuse analyses, while the latter modify the computations in the existing information flows in order to make them harder to untangle. In either case, the original information flows in the program’s computation remain, leaving them open to examination by information-flow-based attacks. The covert channel obfuscation techniques we introduce in this paper, by contrast, hide the presence of data flow, i.e., data dependencies. The importance of such obfuscation arises from the fact that tracking data dependences is an important component of many security-relevant program analyses (including information flow analysis). By removing information flows from the program’s visible computation, our covert-channel-based obfuscations render these flows invisible to program analyses and thereby fundamentally change the attack surface of the obfuscated code.

A second motivation behind this work is the recent emergence of techniques that exploit covert channels to sidestep privacy protections on mobile systems. The research literature typically considers these covert channels used as conceptually distinct and unrelated entities. This paper provides a general framework for reasoning about and understanding covert channels and the information flow obfuscations they enable.

Finally, we introduce the notion of probabilistic obfuscation. It is generally assumed that obfuscating transformations should be semantics preserving. However, there are situations where some semantic slack may be acceptable, e.g., malware writers (who heavily obfuscate their code in order to protect it from analysis) may be perfectly happy if some fraction of the millions of malware instances they distribute fail in the field, as long as they execute correctly “often enough.” We refer to obfuscating transformations that are not always completely semantics-preserving as probabilistic obfuscations. Such transformations form interesting and novel additions to the obfuscation arsenal. In particular, the construction of probabilistic obfuscation building-blocks—such as the covert channel data flow primitives presented in this paper—allow us to construct non-deterministic variants from traditional deterministic obfuscating transformations.

This paper makes the following contributions:

- it describes a semantic framework for understanding information transfer via covert channels;
- it describes a novel approach to obfuscation that removes information flows from a program, rendering them invisible to traditional analysis techniques;
- it describes multiple channels of information flows that can be exploited in this way to impede analysis;
- it shows that current information-flow-based analyses fail to detect the described covert channels; and
- it introduces the idea of probabilistic obfuscation.
The remainder of the paper is organized as follows. Sec. 2 describes a semantic framework for understanding covert channels. Sec. 3 discusses the attack and defense models assumed in this work. Sec. 4 describes the use of covert channels for code obfuscation. Sec. 5 explores the notion of probabilistic obfuscation and correctness guarantees. Sec. 6 presents evaluation results for a prototype implementation. Finally, Sec. 7 discusses related work and Sec. 8 concludes.

2. Semantic Considerations

In order to understand how a program’s behavior can be influenced in specific ways by the deliberate use of covert channels, this section gives a brief and informal synopsis of how and where covert channels can arise in the (operational) semantics of a program, which specifies a program’s execution behavior in terms of a sequence of state transitions of an abstract machine.

2.1. TMI Semantics

Program execution on a modern computer system involves interactions between many complex components: the program’s runtime system, the operating system, the CPU, disk, memory, and various levels of cache. Each component has its own state that affects, and is affected by, the program’s execution, and so could plausibly be part of a semantic description of the program’s execution. We refer to an operational semantics that gives a detailed picture of a program’s execution, encompassing both state changes corresponding to program constructs as well as those corresponding to implementation-level aspects of the program’s execution, as TMI Semantics [1].

As the name suggests, TMI semantics can have much more information than necessary. In most cases, such a fine-grained description simply clutters up the semantics and impedes, rather than helps, with understanding the program’s behavior. We can get around this problem via an abstraction function α that maps the TMI semantics to the conventional semantics by discarding irrelevant implementation-level detail from the TMI semantics. This is illustrated in Figure 1.

![Figure 1. TMI Semantics](image)

Note that, depending on the amount of detail captured, a given program can have many different “conventional semantics” and many different TMI semantics; correspondingly, there is a different abstraction function α for each S_{TMI} and S_{conv}. The arrow labeled ‘implementation’ in Figure 1 should not be understood as mapping each source program to a unique implementation. A given source program can have many different implementations, e.g., corresponding to different compilers or compiler optimizations. Indeed, correctness of the compiler requires that, for every program P and any pair of implementations γ_1, γ_2 of P, it must be the case that $\alpha(S_{TMI}(\gamma_1(P))) = \alpha(S_{TMI}(\gamma_2(P)))$.

2.2. Visible vs. Invisible State

In general, states in the TMI semantics consist of many different components. For a state in the execution of a given program, for example, these may include: the program counter; values for (memory locations and registers corresponding to) its variables; the runtime clock; and information about the internal state of the runtime system, e.g., the garbage collector, heap memory allocator, and JIT compiler. The abstraction function α shown in Figure 1 discards information about some of these components; components of the TMI semantics state that are discarded by α are invisible in the conventional semantics. We refer to such components as being in the “invisible state.” More formally, a component I of a TMI semantics S_{TMI} is invisible under an abstraction function α if there exist two TMI states s_1 and s_2 that differ on the value of the component I but where $\alpha(s_1) = \alpha(s_2)$, i.e., the fact that s_1 and s_2 differ on the value of component I is not visible once we apply the abstraction function α. For example, if an abstraction function discards information about the cache behavior of a program, then two TMI states that differ only on whether or not a particular memory location is in the level-1 cache will not be distinguishable under α; in this case, therefore, the component of the TMI semantics corresponding to the cache will be part of the invisible state. As another example, consider two TMI states in an interpreted system that differ only on whether or not a particular function has been JIT-compiled. If α discards information about the execution speeds of functions, the “JITted-ness” of functions will be part of the invisible state. An abstraction function α thus induces a partitioning of the components of each TMI state s into a “visible” part, which is reflected in $\alpha(s)$, and an “invisible part” that is not reflected in $\alpha(s)$.

2.3. Code Obfuscation via Covert Channels

A code obfuscation tool takes a program P as input and transforms it into a program P', semantically identical to P. The goal is for P' to be much less amenable to analysis than P, while minimizing the computational overhead incurred. There are many aspects of P that we may want to obscure, such as control flow, abstraction layers, embedded secrets such as cryptographic keys, etc. Traditional
obfuscating transformations include virtualization, flattening [7], branch functions [8], white-box cryptography [9], and data encoding [10]. On the theory side, there exist both impossibility results [11] and recent results showing that cryptographically secure obfuscation is possible under some models [12], albeit with unacceptably high levels of computational overhead.

In a conventional view of program execution, values that are computed and propagated by the computation flow through components of the visible state. The key idea behind using covert channels for code obfuscation is the insight that the flow of values through a computation need not always go through the visible part of a state, but can sometimes occur through the invisible part.

In order to realize this functionality, we have to inject information from the visible state into some component of the invisible state, and subsequently recover information from that component of the invisible state back into the visible state. To this end, we propose two primitives: \texttt{leak}_{k}, which injects information about a visible-state value \texttt{a} into the invisible-state component \texttt{I}_k by perturbing the value of \texttt{I}_k in a way that captures some aspect of the value \texttt{a}; and \texttt{retrieve}, which returns to the visible state a value retrieved from the invisible-state component of the program’s state. This is illustrated in Figure 2 where the \texttt{leak} primitive injects the value \texttt{b} from the visible state into the invisible state, and the \texttt{retrieve} primitive later retrieves this value back into the visible state (possibly into a different variable \texttt{c}). For example, if the component \texttt{I}_k is the byte code of the program in an interpreter, then \texttt{leak}_k may use a bit in the value of a visible-state variable \texttt{x} to cause some function in the program to become JIT-compiled, and \texttt{retrieve} may use the execution time of the function to determine whether it has been JIT-compiled and thereby reconstruct the value of the corresponding bit of the variable \texttt{x}.

In order to be useful, \texttt{retrieve} should return the information leaked by \texttt{leak}: namely, for all values \texttt{a}, \texttt{retrieve}_k(\texttt{leak}_k(\texttt{a})) = \texttt{a}; or, equivalently, they should compose to the identity function:

\[
\texttt{retrieve}_k \circ \texttt{leak}_k \equiv \text{id}.
\]

If this condition is satisfied, the invisible-state component \texttt{I}_k forms a usable covert channel. As discussed in Section 5 it may be possible to relax this requirement so that it holds probabilistically, in which case we get a probabilistic covert channel.

Later sections of this paper give several examples of covert channels realized by using different components of the invisible program state together with the corresponding \texttt{leak} and \texttt{retrieve} functions.

3. Attack and Defense

For the obfuscation to be successful, some adversary must not be able to identify the software that leaks information using our obfuscation, given some universe of programs, with a high degree of confidence. This adversary has a large number of resources and complete control over the system, allowing them to observe every action taken by the software (including in the kernel).

3.1. Attack Model

Covert channels can be detected by: either (i) identifying the covert channel primitives, or (ii) identifying perturbations from normal behavior. Identifying the covert channel primitives requires discovering at least one of the following components: (i) a program construct \texttt{A} that affects an invisible-state component \texttt{I}_k in a way that depends on a visible-state value (\texttt{leak}); (ii) a construct \texttt{B} that computes a value that is dependent on the same invisible-state component \texttt{I}_k (\texttt{retrieve}); and (iii) reachability of \texttt{B} from \texttt{A} via the program’s control flow. Identifying perturbations, on the other hand, requires monitoring for statistical anomalies.

3.1.1. Identifying Primitives. Both the \texttt{leak} and \texttt{retrieve} primitives can be detected using static program analysis. The adversary can look for one or both of the primitives directly in the binary or source code. For example, to detect a timing channel through the file cache, an adversary may look for timed file writes.

Another available avenue to detection is for the adversary to observe the flow of information from the leak primitive to the retrieve primitive using dynamic information flow techniques such as taint analysis. Static information flow does not make sense in this context since static analyses cannot reason about actions taken outside of the source they are operating on. Since the obfuscation leaks information through the runtime system, the flow will not be visible in the source and therefore requires all covert channels in the runtime system to be simulated. A dynamic analysis, on the other hand, can be performed at a much lower level and therefore requires much less simulation.

3.1.2. Identifying Perturbations. An individual channel’s statistical behavior can be monitored for abnormalities (as is common for network covert channels [13]). This approach creates a model for the typical behavior of the target leak primitive and compares it to the behavior it observes in other software. Anything that deviates too far from the model will then be flagged as potentially obfuscated.
3.2. Defense Model

While there are several detection methods available to the adversary, there are defenses that augment the obfuscation to make it more difficult to detect.

There are several problems with using static program analysis to detect covert channels. First, since it simply looks through an executable for the leak and retrieve primitives, there is no way of discovering new covert channels using this approach. Second, the attack will only work if the primitives used for covert channels are unsteady, i.e., not commonly used in typical software. Our framework, however, does not rely on a single primitive to leak or retrieve values and is easily extensible so that more can be added in the future. This flexibility allows us to swap infrequently used primitives for more frequently used ones that are harder to detect. For example, it may be trivial to detect timed file reads, but our framework can instead make use of implicit timing using threads (see Section 4.4), resulting in behavior that is common in typical software.

Information flow techniques can be used to detect covert channels, but since the information flows under consideration have been moved out of the program by the obfuscations and into the runtime system and/or operating system, the amount of code that has to be considered has to encompass all of this code as well. Such analyses therefore require considerable additional implementation and analysis effort due to the amount of system state that must be simulated.

Statistical analyses assume that the adversary knows and can monitor all covert channels in the system and that the usage of the covert channel will result in a meaningful deviation from the model derived by the adversary; however, as discussed by Crespi et al. [14], it is possible to leak information without violating the adversary’s model. To do so, the obfuscation can construct its own statistical model of the channel and modify its behavior based on those statistics to evade detection. As long as the model derived by the obfuscator is at least as accurate as the adversary’s model, detection can be avoided.

4. Obfuscating Data Flow

Traditional obfuscations retain the information flows in the program, but augment and/or modify them in order to make them harder to analyze. This section describes a family of obfuscating transformations that takes a fundamentally different approach: it conceals data flow by moving them out of the computation and into the program’s runtime system or the operating system. While some of our transformations incorporate ideas previously discussed in the covert channel literature, they are employed in a radically different way: rather than using covert information flows as an attack to exfiltrate information from a computing system, we protect a computing system by using covert flows to hide the presence of data flow from analysis.

The transformations are designed such that a programmers can trade off between complexity, diversity, stealth, level of semantic preservation, and performance. The transformations have been incorporated into a publicly available C source-to-source obfuscation tool that is capable of transforming real programs written in the gcc dialect of C.

The obfuscator supports a large collection of traditional transformations [15] in addition to the ones presented here: virtualization, dynamic obfuscation (self-modifying code), branch functions, control-flow flattening, etc. These transformations can be freely mixed-and-matched, allowing, for example, code obfuscated with the transformations proposed in this paper to be further transformed by adding a layer of virtualization, then again transformed by replacing direct branches by calls to branch functions, etc.

In the following, we will first describe deterministic primitives which are well-known techniques from the literature to obscure data flow. Next, we will present a set of novel non-deterministic primitives which have been inspired by the idea of timing-based covert channels. We next present a set of combiners that allow us to connect deterministic and non-deterministic primitives in ways that result in obfuscated data flow of arbitrary complexity and level of semantic precision. We next present ways to compute time in our timing-based covert channels without explicitly using the timing facilities provided by the operating system, since such code will be unsteady in many programs. We conclude the section with a discussion of practical concerns.

4.1. Deterministic Primitives

<table>
<thead>
<tr>
<th>Primitive 1 Increment</th>
<th>void P() {</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>int a = b;</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td></td>
<td>void P’() {</td>
</tr>
<tr>
<td></td>
<td>int i,a = 0;</td>
</tr>
<tr>
<td></td>
<td>for(i=0;i<b;i++)</td>
</tr>
<tr>
<td></td>
<td>a++;</td>
</tr>
</tbody>
</table>

Simple deterministic data flow-obfuscating primitives have been described previously in the literature [16], [17], [18]. Primitive 1 shows a trivial example where a is incremented up to the value of b. While there is no direct data-flow dependence on a and b, there is a control-flow dependence. This is known as implicit flow and analyses exist to handle it [19], [20], [21].

A different technique uses signals to, one bit at a time, copy the value of b into a. This is shown in Primitive 2. Again, techniques have been developed to analyze such codes [22].

It should be noted that for each of these techniques many variants are possible, and more variants will add to the diversity of the obfuscated code. Our current implementation includes 7 deterministic primitives but many more are possible, and the architecture of the obfuscator is such that it is easy to plug in new variants.

2. The tool itself and all the test cases referred to in this paper can be downloaded from hgress.cs.arizona.edu/eurosp18.zip. The executable binary of the tool is publicly available from our website and its source code is available to researchers upon request.
4.2. Non-Deterministic Primitives

We next describe a method to hide the assignment \(a = b\) that neither displays direct data flow nor implicit control flow. The idea is to encode the value of a bit to be copied in the time it takes to execute a particular control flow. The idea is to encode the value of a bit inside a program, but other channels are certainly possible, and the principles remain the same.

This idea was inspired by attacks on the side channels found in the implementation of many cryptographic algorithms. In such attacks, bits of a secret are extracted by measuring artifacts of the execution of the algorithm, such as time, energy, or electromagnetic radiation \([23], [24]\). Our system is similar in that it moves information (bits of a word to be copied) using execution artifacts, but different in that the measurement of the artifact is internal to the program, not external. In the following we will restrict our measurements to time, since this is readily available from inside a program, but other channels are certainly possible, and the principles remain the same.

While it would be trivial to generate two processes where one is slower than the other—two loops with different bounds would suffice—this would not sufficiently raise the bar for the adversary. Instead, we will seek processes that exploit aspects of the underlying hardware, operating system, and runtime system. Again, this is inspired by proposed side channel attacks, such as those that make use of processor caches \([25]\). Our ultimate goal is to force the adversary to encode, in their analysis tools, not only the semantics of the instruction set and system calls, but also extra-semantic characteristics of the entire platform, such as the behavior of instruction caches, file caches, garbage collectors, jit compilers, etc.

4.2.1. Data cache channel. Our first channel implements a Flush+Reload cache attack \([25]\), which leverages characteristics of processor data caches to leak information. Conceptually, depending on the value to be transmitted, the leak function loads the content of an address into the processor cache or flushes the cache line at that address. To recover the value, the retrieve function measures the time taken to load the data at that address.

Our tool generates the code in Primitive 4. Note that the only difference between the fast and the slow processes is how they treat the two buffers, \(buf1\) and \(buf2\). The slow process first flushes \(buf1\) and then reads from it, forcing the processor to reload the corresponding cache line. The fast process, however, flushes \(buf1\) and then reads from \(buf2\) which is (likely to be) mapped to a different cache line and thus, after the first read, likely to be cached.

All our non-deterministic primitives have a tunable parameter \((param)\) in Primitive 4. These need to be adjusted such that the difference in timing between the slow and the fast processes is significant enough that it can be effectively measured given the resolution of the clocks used, and also consistently producing the correct result, given normal fluctuations on the platform. We will discuss training of the parameters later in this section.

4.2.2. File cache channel. In order for an analysis tool to process the code in Primitive 4 it needs at least a rudimentary understanding of the runtime behavior of CPU caches. We would like to force the analysis tool to have an
Primitive 5 File cache

process(param, nocache):
 posix_memalign(&buf, pagesize, param);
 fd=open("/tmp/file.txt", "w");
 fcntl(fd, F_NOCACHE, nocache);
 for (i=0; i<param; i++)
 write(fd, buf, pagesize);
 close(fd);
 fd=open("/tmp/file.txt", "r");
 fcntl(fd, F_NOCACHE, nocache);
 start = time();
 for (i=0; i<param; i++)
 read(fd, buf, pagesize);
 time = time() - start;
 close(fd);
 unlink("/tmp/file.txt");

slow process(param):
 process(param,1);
fast process(param):
 process(param,0);

understanding not just of the hardware, but of the behavior of every level of the complete platform, including the operating system. Our second non-deterministic primitive is also based on caching, but makes use of file caches rather than instruction caches. Here, the leak function transmits a value by conditionally loading a file into the file cache, and the retrieve function recovers that value by the time it takes to read the file. Our obfuscator generates the code in Primitive 5.

Primitive 6 Jitting

int freq=0;
void foo(input, output) {
 static void (*foop)(......);
 if (freq==0) {
 foop = JIT(bytecodes);
 freq++;
 }
 (*foop)(input, output);
}
slow process(param):
 freq=0;
 start=time();
 foo(......);
 time=time()-start;
fast process(param):
 freq=0;
 foo(......);
 start=time();
 foo(......);
 time=time()-start;

4.2.3. Jitting channel. Many programs today are interpreted and, in order to reduce the performance overhead of interpretation, use a just-in-time (JIT) translator to compile the interpreted bytecode to machine code on the fly. Typically, the run-time system will interpret a function the first few times it is called and, only when it has decided the function is indeed a hotspot, will it invoke the JIT translator.

Our obfuscator includes a runtime JIT translator which can be used by itself as an advanced packer transformation that only produces machine code for a function when it is called. The JITter also forms the basis for dynamic obfuscating transformations that generate self-modifying code. We make use of this JITter to construct a leak function that transmits a value by conditionally JIT-compiling a particular procedure and a retrieve function that recovers the value by timing a call to the procedure.

The resulting code is shown in Primitive 6. Here, the slow process measures the time of both the JITted translating foo to machine code and the call to the jitted function foo itself. The fast process, on the other hand, only measures, the time of the JITted function. In this example the JITting always happens the first time a function gets called but this can be varied to make the process less predictable to an analysis tool.

Primitive 7 Garbage collection

process(size):
 GC_gcollect();
 buildLinkedList(size);
 timeT start = time();
 GC_gcollect();
 timeT time = time() - start;
slow process():
 process(large number);
fast process():
 process(small number);

4.2.4. Garbage collection channel. Many modern languages include a garbage collector as part of the runtime system. This gives us yet another subsystem on which to build a timing channel. Many possibilities avail themselves, especially if the particulars of the garbage collection algorithm are known. For example, a copying collector is expected to be faster when the heap consists mostly of garbage than when every object is reachable from the roots. Therefore, we can create a leak function that transmits a value by varying the reachability of objects on the heap and a retrieve function that collects that value by timing the garbage collector.

In the example in Primitive 7 we are using the Boehm mark-and-sweep collector. This code first performs a collection to clear the heap of any existing garbage. Next, a linked list is created, a long one for the slow process and a shorter one for the fast process. Finally, a second garbage collection is performed and timed. With a mark-and-sweep collector a garbage collection of a heap containing of a very

3. The code shown is for MacOS/Darwin. The Linux interface is different, passing the nocache flag to the open system call, rather than to fcntl. Our obfuscator supports both Linux and MacOS.

4. We have tested the Boehm library to ensure that it forms a feasible garbage collection channel, but we have not yet integrated it into our obfuscation tool.
long chain of reachable objects is expected to be slower than a collection with fewer reachable objects.

4.3. Flow Combiners

There are several issues with the flow primitives described so far. While there are undoubtedly many possible techniques yet to be discovered to hide data flow, deterministic as well as non-deterministic, the number of such techniques is likely to be finite. This is a problem since it puts a practical limit on the level of diversity that an obfuscation tool can achieve. Furthermore, our timing-based primitives by their very nature will sometimes fail, i.e. the process meant to be fast will, occasionally, be confused for a slow process. This will result in an assignment \(a = b \) giving \(a \) the wrong value and likely causing program failure. However, we would like the failure mode to be under the control of the programmer who is in the best position to make the appropriate trade-offs between performance, diversity, and correctness.

To these ends, we introduce the concept of flow combinators. These are operators which can compose the primitives described above to achieve desired levels of diversity and correctness. Combiners are recursive, meaning they can create arbitrarily complex flow expressions. For example, \(a = b \) can be turned into

\[
\text{a = majority(compose(d_0, n_0), d_1, repeat(n_1, 5))(b)}
\]

They also allow us to increase our confidence in non-deterministic primitives by combining them using majority logic:

\[
a = \text{majority}(n_0, n_1, n_2, n_3, n_4)(b)
\]

Furthermore, we can create deterministic flow expressions from non-deterministic primitives, by combining them with deterministic ones. For example, the flow expression

\[
a = \text{majority}(n_0, n_1, d_0, d_1, d_2)(b)
\]

will always compute the correct value for \(a \); should one or both of \(n_0 \) and \(n_1 \) fail they will still be outvoted by \(d_0, d_1, d_2 \). Finally, \text{select} and \text{repeat} allow us to balance correctness and performance overhead:

\[
a = \text{select}(d_0, d_1, d_2, \ldots, \text{repeat}(n_0, 7))(b)
\]

Here, we will mostly execute deterministic primitives (which tend to be fast) mixed with the occasional (slower) non-deterministic primitive.

4.4. Stealthy Timing Without Timing

One issue with the timing-based primitives we have seen is that the act of a program timing itself may be unstealthy in many programs. While our implementation supports several timing primitives (such as the X86 RDTSC read timestamp counter instruction and the gettimeofday system call), neither is likely to be frequently occurring in many programs. This could leave our obfuscated code open to static program analysis attacks as discussed in Section 3.1.

We therefore introduce the ability to replace explicit timing with implicit timing using threads. The code in Primitive 8 illustrates the idea. We spawn a slow and a fast thread, these threads write (with a deliberate race condition) on the variable \text{result}, and, finally, a barrier waits for both threads to finish. At the end, the slow thread is likely to have finished last thereby assigning the correct bit to \text{result}.

While the code in Primitive 8 should fit in many threaded programs (high performance codes often use \text{create} and \text{join} in this way), depending on the threading behavior of the input program, this design too may be unstealthy! Fortunately, there are many variants of the basic idea that can be matched to the threading behavior of a particular program. For example, we have a variant that uses a \text{thread-pool} (obviating the need for multiple conspicuous \text{creates}) and a variant that spawns only one thread instead of two. Even single-threaded programs can be accommodated by introducing bogus decay threads. Finally, suspicious race conditions on the \text{result} variable could be detected ([27], but such potentially unstealthy behavior can be avoided by introducing bogus locks.)
Figure 3. Training results for Primitive 5 in Section 4.2.2. Timings were collected on a laptop with a 2.9GHz Intel Core i7 with 16GB of main memory and 2TB of SSD disk. Both axes are base-10 log scales.

Primitives

Thread-based timing

```c
int result;
void threadZero(void (*work)()) {
    work();
    result = 0;
}
void threadOne(void (*work)()) {
    work();
    result = 1;
}
void P'( ) {
    a=0;
    for(i in [0...(bits in b)-1]) {
        zeroWork = slow process;
        oneWork = fast process;
        if(i\textsuperscript{th} bit of b) {
            zeroWork = fast process;
            oneWork = slow process;
        }
        s=thread_create(threadZero, zeroWork);
        f=thread_create(threadOne, oneWork);
        thread_join(s);
        thread_join(f);
        if (result)
            a |= 1 << i;
    }
}
```

4.5. Training Primitives

Before we can use a non-deterministic primitive n we have to covert channel may misbehave in different ways on different systems. **train** it. This means determining two values, param and threshold, such that the accuracy of n is maximized and the performance overhead is minimized.

Figure 3 shows a case where we have trained Primitives on a modern laptop. We executed 500 slow and 500 fast samples for each parameter value, here represented by circles and triangles respectively. The y-axis shows the value of the parameter (file size, in this case) and the x-axis the number of CPU ticks, as measured by the x86 instruction RDTSC. The vertical bars are the thresholds, here computed as the midpoint between the medians of the slow and fast samples. Next to each sample is shown two numbers s/f, the number of slow and fast failures, where fast failures fail to the right of the threshold and slow failures fail to the left.

In our current prototype implementation training proceeds by examining increasingly larger parameter values, until one is found for which there is a suitable "gap" between fast and slow samples. Such a gap will allow for some slack in timing measurements at runtime. In Figure 3 for example, parameter values less than 16 seem to overlap too much, whereas param=16 or param=32 display suitable gaps.

4.5.1. Offline vs. On-Demand Training. There are three possibilities for when to train for suitable parameter values. **Offline** training determines parameter values at obfuscation time, before the program is distributed to users (and potential adversaries); **startup** training runs when the program is first executed, but before user code starts running; and **ondemand** training mixes training with the execution of user code. Offline training has no performance impact but suffers from the problem that it cannot know the system characteristics of all the platforms on which it may potentially run. Startup and on-demand training runs on the actual platform but incur a performance overhead, either when the program starts up, or during execution. On-demand training has the further advantage that it can adjust parameter values and thresholds as the program is running, potentially taking into account the actual system environment.
account changing runtime characteristics of the program and its execution environment. Our current implementation supports offline and startup, but not on-demand, training.

5. Probabilistic Obfuscation

In order for probabilistic obfuscation to become a viable technique, each non-deterministic transformation must be accompanied by a correctness guarantee, i.e., a bound on its failure rate. In the remainder of this section we will explore such guarantees for the primitives in Section 4. We currently have two training primitives built into our prototype implementation. The first, called gap, chooses parameters and thresholds heuristically by looking for the smallest parameter with a “reasonable” gap between fast and slow measurements. The second, called resend, trains to determine how many times a data item needs to be transmitted in order to ensure that a user-defined correctness criterion is met. For example, the training could determine that for a particular non-deterministic copy operation a data item needs to be sent 10 times to ensure that the copy fails no more than once in a hundred times. Currently the resend training primitive is only available if an accurate clock is used for timing.

Primitive 9: Generic Resend Primitive

```plaintext
bit b = ...;
int n = ⌈2 · log(r)/log(t_i)⌉;
timeT[n] times;
for(i=0;i<n;i++) {
    timeT start = time();
    if (b == 1)
        slow process(param);
    else
        fast process(param);
    times[i] = time() - start;
}
timeT m = median(times);
bit a = m > threshold;
```

5.1. Correctness Guarantees

Although there will always be a small probability that an assignment \(a = b \) transformed with one of the primitives in Section 4 will go wrong, we can choose the desired reliability of the process through two parameters: the target confidence level (which we will call \(\text{conf} \)), and the target expected error rate (which we will call \(r \)). The procedure described below will, at the given confidence level, set the variable \(a \) incorrectly at a rate that is, at most, the expected error rate. For example, at \(\text{conf} = 99\% \), \(r = 10^{-6} \), we can expect that at most one every 100 times the training procedure runs the code will generate errors at an observed rate of more than one in a million.

During training we determine three values, \(T_i \), \(t_i \), and \(\text{threshold} \), for each non-deterministic primitive \(n_i \). \(t_i \) is the estimate of the upper bound of the confidence interval of a Bernoulli random variable at the confidence level \(\text{conf} \) (using the Wilson score rule \([23]\)). This is determined by tallying the total number of successful and failed transmissions during training. \(T_i \) is the expected runtime for one execution of \(n_i \), which we estimate by computing the mean runtime over the training data.

To copy a single bit \(b \) to \(a \) with the expected error rate \(r \) we modified our copy procedure so that the bit is sent multiple times (see Primitive 9).

As a concrete example, consider a situation where during training we have run 500 tests and determined that 50 of them fall on the “wrong side” of the threshold. I.e., in 10% of the tests a slow value was measured as fast or a fast was measured as slow. In this case, we have 450 successes and 50 failures. By using Wilson’s score rule, we find that at our chosen confidence level \(\text{conf} = 0.99 \) and \(t_i \approx 0.14 \). Suppose that \(r = 10^{-6} \), i.e., we are looking for a one in a million error rate. Then, \(\log(r) = -6 \) and \(\log(t_i) \approx -0.857 \), so

\[
n = [2 \cdot \log(r)/\log(t_i)] = 15.
\]

Thus, we need to send each bit of a word 15 times to get a one in a million error rate. For a one in a billion error rate, this increases slightly to \(n = 21 \). To see why the algorithm works, notice that every transmission has at most a \(t_i \) chance (at a given confidence level) of being wrong. In order for the decision using the median value to be incorrect, then, more than half of the transmissions need to be wrong. We want to bound this probability, and so we solve for \(n \) in \(t_i^{\cdot n+1} \leq r \) (we take the product of the probabilities since runs of \(t_i \) are independent of each other). A small simplification of the solution then gives the expression for \(n \) in equation 1.

The claim above works for any technique. To decide between techniques, we try to minimize the runtime cost for each reliable transmission. That cost is simply \(n \cdot T_i \), or \(2 \cdot \log(r) \cdot T_i/\log(t_i) \). Since \(r \) and \(t_i \) are both less than 1, it’s easier to work with the negative of their logs, so we get \(2 \cdot (-\log(r)) \cdot (T_i/ - \log(t_i)) \). The quantity \(T_i/(-\log(t_i)) \) characterizes each primitive \(n_i \): our goal is to minimize \(T_i \), and maximize \(-\log(t_i)\). It also characterizes the trade-off: we will pick primitives for which the individual error rate is relatively high, since they are likely to be faster. See Figure 3 for typical runtime and error rates.

6. Evaluation

We evaluated a prototype implementation of our framework to assess its effectiveness and performance. We considered two kinds of attacks on our obfuscations. First, since our obfuscation uses covert channels to conceal information flows, we analyzed samples obfuscated using our framework with modern symbolic analysis engines, which are widely used and represent the state of the art in information-flow-based program analysis techniques. Second, in order to evaluate the stealthiness of our approach, we used analyses proposed in the literature aimed specifically at detecting covert channels. There are a wide variety of techniques that have been proposed in the literature, and as a matter of practicality we implemented and evaluated a couple of
such techniques that are very general and broadly applicable against a broad spectrum of covert channels.

6.1. Symbolic Analysis

We evaluated our obfuscation on four state-of-the-art symbolic analysis engines. Two of these, S2E [29] and Fuzzball [30], are complete analysis tools targeted at test case generation, so they symbolically execute a program in order to maximize code coverage. The other two engines, ANGR [31] and Triton [32], are binary analysis frameworks with built-in symbolic execution engines. They provide the user with more flexibility by allowing analyses to be customized. As a result, users can perform more than just symbolic execution with these frameworks, and can customize the way in which the program is symbolically explored. For our evaluation, we wanted to see what could be detected by the two frameworks by default, and therefore what the user would have to add. We therefore configured ANGR and Triton to act like a symbolic analysis tools so that they would provide us with concrete values for the symbolic variables that result in unique paths being taken. Among the tools we experimented with, only S2E is able to trace into kernel code and continue the analysis within the operating system.

6.1.1. Evaluation Process. From the simple input program in Figure 4, our obfuscation tool generated 12 obfuscated samples for the symbolic analysis engines to analyze. The program takes an input, stores it into the variable a, and assigns to b, thereby creating a direct data dependency. The value in b is then compared to the 32-bit constant 0x55787855 (ASCII "UxxU", a number with an equal number of 0 and 1 bits) and, based on the result of the comparison, prints "SUCCESS" or "FAILURE". Therefore, if we mark a as symbolic, the engines should be able to find two paths in the executable, one leading to "SUCCESS" and one leading to "FAILURE". Otherwise, as seen in Table 1 all symbolic analysis engines achieve exactly this result when run on the program in Figure 4. Since we know that each of the engines achieve the correct result for our input, we know that if they cannot detect the same paths in our obfuscated programs then the obfuscation must be successful.

To test our framework, we generated the samples described in Table 1 which obfuscate the direct data assignment from a to b of the program in Figure 4. The samples are organized into 3 classes: deterministic, non-deterministic, and combined. The deterministic samples perform transformations on the data flows that deterministically yield the input value, allowing us to establish if the engines can follow simple obfuscated data flows. The non-deterministic samples then check if any of the engines are capable of tracing information flow through time, either implicitly or explicitly. The final class uses flow combiners to compose the various channels so that we can evaluate if combining flows makes the obfuscation more or less detectable.

To ensure the samples could be run by all of the symbolic analysis engines, some engine-specific additions needed to be made. No modification was necessary for ANGR and Triton since they allow the inputs to a program to be symbolic. Unlike ANGR and Triton, Fuzzball introduces symbolic variables by allowing a user to specify a region in memory to be symbolic. We therefore modified this program to print out the address of the global variable a. Additionally, we took out the assignment to a from the program’s input value since that would overwrite the symbolic variable. S2E introduces symbolic variables and controls path exploration using annotations to the source code. These annotations were added to each sample so that S2E marked a as symbolic after the assignment from input and explored the remainder of the program.

6.1.2. Evaluation Platform. ANGR, Triton and S2E binaries were run on a machine running Linux 14.04 with 1TB of RAM and 4 Intel Xeon E5-4627 CPUs, each of which has 8 cores. Fuzzball, due to issues installing it on the machine just described, was run in a virtual machine with 8 cores and 8GB of RAM. All ANGR and Fuzzball samples were given a timeout of 48 hours. S2E was given a timeout of 12 hours and Triton 24 hours. All of these timeouts were significantly longer than the time cited to analyze samples with these engines in prior publications [31], [33], [29].

6.1.3. Evaluation Results. Table 1 shows the results of our tests. ANGR was able to defeat the obfuscation used by sample 1: an unrolled bitcopy. For samples 0, 2, 6, 7, 8 and 11 ANGR failed due to internal errors. These errors resulted from the symbolic execution engine failing to concretize symbolic predicates and unhandled system calls. Samples 5 and 9 induced a memory error in python. Finally samples 3, 4 and 10 were killed externally. For samples 3 and 4 this was due to there being no more swap space or memory remaining, while sample 10 was killed for running past the timeout. One interesting observation is that while ANGR successfully discovered all paths in sample1, it failed on samples 9 and 10. Both of these obfuscations utilized the unrolled bitcopy in the flow-combiner, but the extra complexity caused the analysis to fail.

```c
int a;
int main(int argc, char *argv[]) {
    a = *(unsigned int *) argv[1];
    int b = a;
    if (b == 0x55787855)
        printf("SUCCESS");
    else
        printf("FAILURE");
    return 0;
}
```

Figure 4. Original input program that was obfuscated for the effectiveness evaluation.
In most cases Fuzzball, it quit and produced an error. Many of the samples failed because of an unhandled call to `mmap`. Since this operation was due to the implementation of the multithreading library or JIT compiler, we could not remove it. Additionally, Fuzzball failed once due to an undeclared variable, which we did not know how to fix. In the cases where Fuzzball did not encounter an error, it only found paths to the failure branch. Of those samples, however, only 1 completed within the timeout time.

S2E did not find all viable paths in any of the samples. As shown in Table 1, S2E timed out on every obfuscated sample except for sample 1. For all of the samples, however, S2E proposed many concrete counter examples that were supposed to trigger different execution paths, but which only triggered one of the target paths in the obfuscated sample, leaving the other undiscovered.

Triton’s behavior was similar to S2E’s: it reported false positive alternative inputs that would only trigger one of the target paths in the obfuscated sample. Moreover for sample 2, Triton encountered a segmentation fault.

6.2. Covert Channel Detection Techniques

To evaluate the stealthiness of our obfuscations against analyses aimed at detecting covert channels, we considered two representative kinds of analyses: (i) clock-perturbation techniques that aim to identify timing channels; and (ii) analyses that examine the system calls executed by a program for indications of suspicious or anomalous behavior.

6.2.1. Clock Perturbation Attacks. The idea behind clock perturbation (or “clock fuzzing”) is to reduce the bandwidth of timing covert channels by introducing noise into system clocks[34], [35]. This noise causes the accuracy of time measurements to decrease system wide, meaning timing
channels must have delays larger than the noise since those near or less than the maximum noise value will generate random results. In our context, clocks are simulated by racing “fast” and “slow” threads, which means perturbations to the system clock would be manifested by corresponding changes in the observed execution time for these threads. Based on this observation, we simulated clock perturbation by adding independent random delays to the transmission and training threads in our obfuscated programs. These delays inject a random perturbation to each thread’s execution time; this can, for example, cause the fast thread to run slower than the slow thread if the delay added to the former is significantly larger than the latter.

We tested clock perturbation against two obfuscated programs: one with offline training and one with startup training. In both cases we set the training confidence to 99% and varied the maximum delay and averaged the success rate and secret value transmission time across 100 runs. It should be noted that despite training to 99%, perturbations after the training ends can cause failures since we have not implemented on-demand training, leading to lower success rates in some cases. As Table 2 shows, with offline training, clock perturbation quickly reduces the accuracy of the covert channel as the induced delay increases since the timing is increasingly influenced by randomness. Startup training performs much better since the training dynamically determines an appropriate transmission speed, as shown in Table 3. Clock propagation therefore reduces the bandwidth of the channel, as expected, but does not defeat the obfuscation.

6.2.2. System Call-based Anomaly Detection.

There have been a number of proposals for anomaly detection by examining the system call behavior of programs (e.g., see [36], [37]). The usual application of this approach involves comparing the system calls executed by a program against a model of its “normal” behavior. However, in a program that uses covert channels for obfuscation, the normal behavior includes the system calls used by the covert channels, so the question to be addressed is: does the use of covert channels result in unusual system call behaviors? To address this question, we examined the system calls executed by each obfuscated program using the `strace` utility and compared them with those executed by the corresponding unobfuscated program; the difference between the two would be the system calls introduced by the covert channel obfuscation.

In our experiments, we found that if the obfuscation used threads, file I/O or JIT, the system call behavior would be drastically different. The threaded samples contained many calls to the `clone` system call due to the fact that every time we leak a bit, two new threads are created. While this is likely to be marked as anomalous, implicit timing can be performed with only one additional thread (Section 4.4). When the single thread timing is applied to one of the obfuscations, the resulting system call behavior is identical to the original program to which a single dummy thread had been added. Consequently, a system-call-based detector would mark all multi-threaded programs as anomalous.

The file I/O channels would likely be suspicious since the obfuscations read and write to the same file. The file cache channel, however, can also be performed by purely using file reads which is much less suspicious [38].

Finally, the JIT based channel has many `brk` and `mmap` system calls, due to the implementation of the JIT translator built into the obfuscator. Both of these system calls, however, are commonly used to allocate space on the heap. Since allocating heap space is common, including other JIT compiler implementations, it is unlikely that this could be used to detect the JIT-based obfuscation.

These results show the flexibility of our obfuscation as the parts that make up the covert channel can be swapped out to maximize stealth.

6.3. Performance

To investigate the relative performance of the primitives proposed here we obfuscated a 32-bit assignment `a = b` with each of the transformations from Table 1. We report the average time for 100 runs of each sample on the same server used to generate symbolic execution results.

As expected, the transformations based on JITting and file caching are much more expensive than the other transformations. It should be noted that even such expensive obfuscations can be useful under the right circumstances: to defeat symbolic analysis it can be enough to apply a transformation to one or a few strategic assignments in the program, and to avoid those that are potential hotspots.
6.4. Misbehaving Channels

One concern with non-deterministic covert channels is that a particular channel may not always behave as expected. As seen in Table 1, sample 8 does not perform well on our test server. The problem is that the granularity of the timing gap of the data cache channel is too small for the thread-based timing to measure. This shows one of the problems with relying on a single channel to send information: a covert channel may be susceptible to different kinds of misbehavior on different systems or under different conditions.

In addition, misbehaving channels can affect results from the flow combiners. Samples 9, 10 and 11 in Table 1 also use the thread-based data cache channel within a flow combiner. While samples 9 and 10 have a low success rate, sample 11 is able to send the data perfectly every time. This is the result of the choice of combiners. Since the compose and select flow combiners use the results of each channel individually, they will have a success rate equal to that of their least successful channel. The majority combiner, however, accepts the most popular result produced by several channels. Therefore, assuming that channels are independent, the majority combiner will succeed as long as at least half of the individual channels are successful.

7. Related Work

The work most closely related to ours is that on side-channel-based information leakage and various covert-channel attacks. Also related are works on information flow tracking and symbolic execution. The idea of probabilistic obfuscation was also mentioned in [39] where authors propose a technique to obfuscate the control flow of the program such that it is no longer deterministic.

7.1. Covert Channels and Side Channels

Covert channels and side channels are information channels that use properties of a computation that are distinct from the actual computation to propagate information. The distinction between these terms is typically one of intent—“covert channel” usually denotes deliberate use of a channel to transmit information, while “side channel” refers to inadvertent information transmission.

There is a significant body of research on side-channel attacks on cryptographic code based on different kinds of observations, e.g., timing characteristics [23], energy usage [24], and cache behavior [38, 40, 41, 42, 25]; Biswas et al. give a survey [43]. In such scenarios, the programs under attack are not deliberately engineered to yield the information the attacker is trying to extract. Correspondingly, the defenses proposed against such information leakage typically focus on “crypto-like” code: small fragments with tightly controlled interactions with external code such as libraries, runtime system, or the operating system [44, 45, 46]. The tightly controlled nature of such software, and the fact that side-channel information leakage is not deliberate, limits the side channels that are usefully exploitable.

7.2. Information Flow Tracking

Information flow tracking systems try to enforce information flow policies which are derived by the confidentiality rules. Security typed languages, in which the types are augmented with security labels to specify (and enforce) information flow policies, provide strong guarantees towards secure information flow. Sabelfeld [52] gives a survey on securely-typed language approaches. These approaches, however, are too strict and can potentially lead to too many false positives that render them inapplicable [21]. Moreover, these approaches are applicable in the context of protecting secrets from being observed by an attacker (e.g., cryptographic keys) and require source code. The focus of this paper, however, is in the context of analyzing binary code where users run untrusted applications that most likely have access to their personal data (e.g., on mobile phones). In these situations, securely typed language approaches do not help to protect the confidentiality of the data [53].

To address these problems, researches have proposed approaches that mark and track sensitive data (i.e., tainted data) and prevent the tainted data from being leaked [54, 55, 56, 57, 58]. An important shortcoming of such dynamic taint propagation approaches is their inability to track implicit information flows [17] and imprecise results in the presence of code obfuscation techniques [59, 60].

7.3. Symbolic Execution

Symbolic execution is used in a wide variety of security-related analyses [61, 62, 63, 64, 65]. While capable of sophisticated reasoning about program behavior, it suffers from a number of practical drawbacks, including path explosion, dealing with indirect references, and memory modeling and system calls [65, 61]. Symbolic execution systems can also have trouble in reasoning about obfuscated code [66, 60, 22], resulting in significant degradation in performance and precision. Similar to the previous studies, this work helps researchers better understand the shortcomings of symbolic execution in dealing with obfuscated code.

Other researchers have used cryptographic hash functions to hide the relationship between branch points and input values in the code [67, 68]. While effective in subverting symbolic execution from accurately determining different execution paths in the program, the use of cryptographic functions raises suspicions in detection mechanisms. Moreover, these studies target the limits of the underlying
SMT solvers and are useful in determining the theoretical boundaries of symbolic execution analysis.

8. Conclusion

This paper describes a new obfuscation technique that exploits covert channels, arising from a program’s runtime interactions with its execution environment, to obfuscate information flows and make them harder to track. Unlike existing obfuscation techniques, our approach removes information flows from the program’s code, rerouting them through the runtime system and/or operating system and thereby rendering them invisible to conventional program analyses. The work is also motivated by the need to understand the foundations of emergent techniques for sidestepping privacy protections on mobile devices and exfiltrating sensitive information. We describe a semantic framework for covert-channel-based information propagation, show how covert channels can be used as a code obfuscation technique, and introduce the notion of probabilistic obfuscation. Experimental evaluation of a prototype implementation of our ideas shows that our obfuscation is stealthy, successfully evades state-of-the-art information flow analysis tools, and is robust against clock-fuzzing and system-call tracing analyses aimed at detecting covert channels.

Acknowledgments

This research was supported in part by the National Science Foundation (NSF) under grant CNS-1525820.

References

9. Errata

Equation 1 in Section 5.1 should instead be:

\[n = \frac{\ln r}{1 + \ln 2 + \ln t_i - 2t_i} \]